Efecto Hall

Diagrama del efecto Hall, mostrando el flujo de electrones (en vez de la corriente convencional).
Leyenda:
1. Electrones
2. Sensor o sonda Hall
3. Imanes
4. Campo magnético
5. Fuente de energía
Descripción:
En la imagen A, una carga negativa aparece en el borde superior del sensor Hall (simbolizada con el color azul), y una positiva en el borde inferior (color rojo). En B y C, el campo eléctrico o el magnético están invertidos, causando que la polaridad se invierta. Invertir tanto la corriente como el campo magnético (imagen D) causa que la sonda asuma de nuevo una carga negativa en la esquina superior.
Esquema explicativo

Se conoce como efecto Hall a la aparición de un campo eléctrico por separación de cargas en el interior de un conductor por el que circula una corriente en presencia de un campo magnético[1]​ con componente perpendicular al movimiento de las cargas. Este campo eléctrico (campo Hall) es perpendicular al movimiento de las cargas y a la componente perpendicular del campo magnético aplicado. Lleva el nombre de su primer modelador, el físico estadounidense Edwin Herbert Hall (1855-1938).

En épocas contemporáneas (1985), el físico alemán Klaus von Klitzing y sus colaboradores descubrieron el hoy conocido como efecto Hall cuántico, lo que les valió la obtención del premio Nobel de Física en 1985. En 1998 se otorgó un nuevo premio Nobel de Física a los profesores Laughlin, Strömer y Tsui por el descubrimiento de un nuevo fluido cuántico con excitaciones de carga fraccionarias. Este nuevo efecto ha traído grandes problemas a los físicos teóricos y actualmente constituye uno de los campos de investigación de mayor interés y actualidad en toda la física del estado sólido.

  1. Zabala, Gonzalo (2007). Robotica. USERSHOP. ISBN 9789871347568. Consultado el 12 de marzo de 2018. 

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search